FINDING EQUATIONS OF LINES

Want some practice with related concepts first?
 <u>Introduction to Equations and Inequalities in Two Variables Introduction to the Slope of a Line Practice with Slope Graphing Lines</u>

(more mathematical cats)

Every non-vertical line in the <u>coordinate plane</u> can be described by an equation of the form y = mx + b, where:

- m is the slope of the line
- b is where the line crosses the y-axis

The equation y = mx + b is called the *slope-intercept form of the line*.

Two different points uniquely determine a line.

One point and a slope also uniquely determine a line.

This web exercise gives you practice writing the equation of the line in these two situations.

EXAMPLE (KNOWN POINT, KNOWN SLOPE)

Ouestion:

Find the equation of the line with slope 3 that passes through the point (-1,5). Write the equation in y = mx + b form.

Solution:

y=mx+b	(A line with slope 3 isn't vertical, so it can be described by an equation of this form.)
y=3x+b	(Substitute the known slope, 3 , in for m . Next, we must find b .)
5=3(-1)+b	(Since $(-1,5)$ lies on the line, substitution of -1 for x and 5 for y makes the equation true.)
5=-3+b	(simplify)
b = 8	(add 3 to both sides; write in the conventional way)
y = 3x + 8	(substitute the now-known value of b into the equation)

Thus, the line with slope 3 that passes through (-1,5) is described by the equation y=3x+8.

Make sure you understand what this means!

Let ℓ denote the line with slope 3 that passes through the point (-1,5).

Every point that *lies on* ℓ has coordinates that make the equation y = 3x + 8 true.

Every point that *doesn't lie on* ℓ has coordinates that make the equation y = 3x + 8 false.

Head up to wolframalpha.com and type in:

$$y = 3x + 8, x = -1, y = 5$$

(Cut-and-paste, if you want.)

You'll see a graph of the line, with the given point indicated by crosshairs.

By adding in an additional set of crosshairs,

you can see that going up 3 and to the right 1 brings you to another point on the line:

$$y = 3x + 8$$
, $x = -1$, $y = 5$, $x = 0$, $y = 8$

EXAMPLE (TWO KNOWN POINTS)

Ouestion:

Find the equation of the line through the points (2, -5) and (-1, 4).

Write the equation in y = mx + b form.

Solution:

First, use the slope formula to compute the slope:

slope =
$$\frac{4 - (-5)}{-1 - 2} = \frac{9}{-3} = -3$$

Then, continue as in the previous example:

$$y = mx + b$$
 (start with slope-intercept form)

$$y = -3x + b$$
 (substitute the now-known slope, -3 , in for m)

$$4 = -3(-1) + b$$
 (Which point should you use? It doesn't matter!

$$4 = 3 + b$$
 (simplify)

$$b = 1$$
 (subtract 3 from both sides; write in the conventional way)

$$y = -3x + 1$$
 (substitute the now-known value of b into the equation)

You might want to check that the two points do indeed lie on the line:

$$-5 \stackrel{?}{=} -3(2) + 1$$
 Check!

$$4 \stackrel{?}{=} -3(-1) + 1$$
 Check!